Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
J Proteome Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572503

RESUMO

The plant surveillance system confers specificity to disease and immune states by activating distinct molecular pathways linked to cellular functionality. The extracellular matrix (ECM), a preformed passive barrier, is dynamically remodeled at sites of interaction with pathogenic microbes. Stem rot, caused by Macrophomina phaseolina, adversely affects fiber production in jute. However, how wall related susceptibility affects the ECM proteome and metabolome remains undetermined in bast fiber crops. Here, stem rot responsive quantitative temporal ECM proteome and metabolome were developed in jute upon M. phaseolina infection. Morpho-histological examination revealed that leaf shredding was accompanied by reactive oxygen species production in patho-stressed jute. Electron microscopy showed disease progression and ECM architecture remodeling due to necrosis in the later phase of fungal attack. Using isobaric tags for relative and absolute quantitative proteomics and liquid chromatography-tandem mass spectrometry, we identified 415 disease-responsive proteins involved in wall integrity, acidification, proteostasis, hydration, and redox homeostasis. The disease-related correlation network identified functional hubs centered on α-galactosidase, pectinesterase, and thaumatin. Gas chromatography-mass spectrometry analysis pointed toward enrichment of disease-responsive metabolites associated with the glutathione pathway, TCA cycle, and cutin, suberin, and wax metabolism. Data demonstrated that wall-degrading enzymes, structural carbohydrates, and calcium signaling govern rot responsive wall-susceptibility. Proteomics data were deposited in Pride (PXD046937; PXD046939).

2.
Int J Biol Macromol ; 267(Pt 2): 131335, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604431

RESUMO

Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.

3.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38444195

RESUMO

In this study, we explored the sphingolipid (SL) landscape in Candida auris, which plays pivotal roles in fungal biology and drug susceptibility. The composition of SLs exhibited substantial variations at both the SL class and molecular species levels among clade isolates. Utilizing principal component analysis, we successfully differentiated the five clades based on their SL class composition. While phytoceramide (PCer) was uniformly the most abundant SL class in all the isolates, other classes showed significant variations. These variations were not limited to SL class level only as the proportion of different molecular species containing variable number of carbons in fatty acid chains also differed between the isolates. Also a comparative analysis revealed abundance of ceramides and glucosylceramides in fluconazole susceptible isolates. Furthermore, by comparing drug-resistant and susceptible isolates within clade IV, we uncovered significant intraclade differences in key SL classes such as high PCer and low long chain base (LCB) content in resistant strains, underscoring the impact of SL heterogeneity on drug resistance development in C. auris. These findings shed light on the multifaceted interplay between genomic diversity, SLs, and drug resistance in this emerging fungal pathogen.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Candida auris , Esfingolipídeos , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
4.
Sci Rep ; 14(1): 6490, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499685

RESUMO

Continuous glucose monitoring (CGM) device adoption in non- and pre-diabetics for preventive healthcare has uncovered a paucity of benchmarking data on glycemic control and insulin resistance for the high-risk Indian/South Asian demographic. Furthermore, the correlational efficacy between digital applications-derived health scores and glycemic indices lacks clear supportive evidence. In this study, we acquired glycemic variability (GV) using the Ultrahuman (UH) M1 CGM, and activity metrics via the Fitbit wearable for Indians/South Asians with normal glucose control (non-diabetics) and those with pre-diabetes (N = 53 non-diabetics, 52 pre-diabetics) for 14 days. We examined whether CGM metrics could differentiate between the two groups, assessed the relationship of the UH metabolic score (MetSc) with clinical biomarkers of dysglycemia (OGTT, HbA1c) and insulin resistance (HOMA-IR); and tested which GV metrics maximally correlated with inflammation (Hs-CRP), stress (cortisol), sleep, step count and heart rate. We found significant inter-group differences for mean glucose levels, restricted time in range (70-110 mg/dL), and GV-by-SD, all of which improved across days. Inflammation was strongly linked with specific GV metrics in pre-diabetics, while sleep and activity correlated modestly in non-diabetics. Finally, MetSc displayed strong inverse relationships with insulin resistance and dysglycemia markers. These findings present initial guidance GV data of non- and pre-diabetic Indians and indicate that digitally-derived metabolic scores can positively influence glucose management.


Assuntos
Resistência à Insulina , Estado Pré-Diabético , Humanos , Estado Pré-Diabético/diagnóstico , Glicemia/metabolismo , Automonitorização da Glicemia , 60431 , Inflamação , Glucose
5.
BMC Vet Res ; 20(1): 65, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395846

RESUMO

BACKGROUND: Bovine tuberculosis (bTB) is a chronic disease that results from infection with any member of the Mycobacterium tuberculosis complex. Infected animals are typically diagnosed with tuberculin-based intradermal skin tests according to World Organization of Animal Health which are presently in use. However, tuberculin is not suitable for use in BCG-vaccinated animals due to a high rate of false-positive reactions. Peptide-based defined skin test (DST) antigens have been identified using antigens (ESAT-6, CFP-10 and Rv3615c) which are absent from BCG, but their performance in buffaloes remains unknown. To assess the comparative performance of DST with the tuberculin-based single intradermal test (SIT) and the single intradermal comparative cervical test (SICCT), we screened 543 female buffaloes from 49 organized dairy farms in two districts of Haryana state in India. RESULTS: We found that 37 (7%), 4 (1%) and 18 (3%) buffaloes were reactors with the SIT, SICCT and DST tests, respectively. Of the 37 SIT reactors, four were positive with SICCT and 12 were positive with the DST. The results show that none of the animals tested positive with all three tests, and 6 DST positive animals were SIT negative. Together, a total of 43 animals were reactors with SIT, DST, or both, and the two assays showed moderate agreement (Cohen's Kappa 0.41; 95% Confidence Interval (CI): 0.23, 0.59). In contrast, only slight agreement (Cohen's Kappa 0.18; 95% CI: 0.02, 0.34) was observed between SIT and SICCT. Using a Bayesian latent class model, we estimated test specificities of 96.5% (95% CI, 92-99%), 99.7% (95% CI: 98-100%) and 99.0% (95% CI: 97-100%) for SIT, SICCT and DST, respectively, but considerably lower sensitivities of 58% (95% CI: 35-87%), 9% (95% CI: 3-21%), and 34% (95% CI: 18-55%) albeit with broad and overlapping credible intervals. CONCLUSION: Taken together, our investigation suggests that DST has a test specificity comparable with SICCT, and sensitivity intermediate between SIT and SICCT for the identification of buffaloes suspected of tuberculosis. Our study highlights an urgent need for future well-powered trials with detailed necropsy, with immunological and microbiological profiling of reactor and non-reactor animals to better define the underlying factors for the large observed discrepancies in assay performance, particularly between SIT and SICCT.


Assuntos
Bison , Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Feminino , Animais , Bovinos , Tuberculose Bovina/diagnóstico , Búfalos , Tuberculina , Teorema de Bayes , Vacina BCG , Teste Tuberculínico/veterinária , Sensibilidade e Especificidade
6.
Biol Psychiatry Glob Open Sci ; 4(1): 182-193, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298802

RESUMO

Background: Smoking is the largest preventable cause of death and disease in the United States, with <5% of quit attempts being successful. Microglia activation and proinflammatory neuroimmune signaling in reward neurocircuitry are implicated in nicotine withdrawal symptomology. Microglia are integral regulators of blood-brain barrier (BBB) functionality as well; however, whether the effects of nicotine withdrawal on microglia function impact BBB integrity is unknown. Methods: Mice were treated with chronic nicotine (12 mg/kg/day) and subjected to 48 hours nicotine withdrawal. Regional BBB permeability, together with messenger RNA and protein expression of tight junction proteins, were assessed. PLX5622 chow was used to deplete microglia to evaluate the role of microglia in regulating BBB integrity and nicotine withdrawal symptomology. Results: Female mice had higher baseline BBB permeability in the prefrontal cortex and hippocampus than males. Nicotine withdrawal further exacerbated the BBB permeability selectively in the prefrontal cortex of females. These effects were concurrent with prefrontal cortex alterations in a subset of tight junction proteins with increased proinflammatory responses following nicotine withdrawal in females. Depletion of microglia via PLX5622 treatment prevented all these molecular effects and attenuated withdrawal-induced anxiety-like behavior in female mice. Conclusions: These results are the first to show sex differences in regional BBB permeability during nicotine withdrawal. This represents a possible link to both the reduced smoking cessation success seen in women and women's increased risk for smoking-related neurovascular disorders. Furthermore, these findings open an avenue for sex-specific therapeutics that target microglia and BBB dysfunction during nicotine withdrawal in women.

7.
J Nutr Biochem ; 127: 109591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311044

RESUMO

The ketogenic diet (KD) has been shown to reduce anxiety and enhance cognitive functions in neurological diseases. However, the sex-specific effects of KD on anxiety-like behavior in healthy individuals and the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are unelucidated. This study investigated the sex-specific effects of KD on anxiety-like behavior and the neuroimmune response in the prefrontal cortex (PFC) and hippocampus of healthy C57BL/6J male and female mice. Animals were fed either a control diet (CD- 17% fat, 65% carb, 18% protein) or a KD (80% fat, 5% carb, 15% protein) for 4 weeks. KD increased the levels of circulating ß-hydroxybutyrate (BHB) both in males and females. However, PFC BHB levels were found to be elevated only in KD males. Moreover, KD did not affect the behavior of females but improved motor abilities and reduced anxiety levels in males. KD suppressed the mRNA expression of the pan microglial markers (Cd68, P2ry12) and induced morphological changes in the male PFC microglia. A sex-specific decrease in IL1ß and an increase in IL-10 levels was found in the PFC of KD males. A similar trend was observed in the hippocampus of males where KD reduced the mRNA expression of P2ry12, Il1ß, and cFos. Additionally, BHB increased the production of IL-10 whereas it decreased the production of IL1ß from human microglia in in-vitro conditions. In summary, these results demonstrate that the anxiolytic and motor function enhancement abilities of KD are male-specific. Reduced pro-inflammatory and improved anti-inflammatory factors in the male PFC and hippocampus may underlie these effects.


Assuntos
Dieta Cetogênica , Camundongos , Masculino , Animais , Humanos , Feminino , Interleucina-10 , Camundongos Endogâmicos C57BL , Ácido 3-Hidroxibutírico , Ansiedade , RNA Mensageiro
8.
Neuropharmacology ; 249: 109868, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403263

RESUMO

Sugar bingeing induces maladaptive neuroadaptations to decrease dietary control and promote withdrawal symptoms. This study investigated sex differences in sucrose bingeing, sucrose withdrawal-induced negative mood effects and underlying neuroimmune response in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of C57BL/6J male and female mice. Two-bottle sucrose choice paradigm was used to develop sucrose dependence in mice. Female mice consumed more sucrose than male mice when given free access to water and 10% sucrose for four weeks. A significant increase in the mRNA expression of neuroinflammatory markers (Il1ß, Tnfα) was found in the PFC of males exposed to sucrose withdrawal. Sucrose bingeing and subsequent sucrose withdrawal showed elevated protein levels of pro-inflammatory cytokines/chemokines/growth factors in the PFC (IL-1ß, IL-6, TNFα, IFN-γ, IL-10, CCL5, VEGF) and NAc (IL-1ß, IL-6, IL-10, VEGF) of male mice as compared to their water controls. These effects were concurrent with reduced mRNA expression of neuronal activation marker (cFos) in the PFC of sucrose withdrawal males. One week of sucrose withdrawal after prolonged sucrose consumption showed anxiety-like behavior in male mice, not in females. In conclusion, this study demonstrates that repeated access to sucrose induces anxiety-like behavior when the sugar is no longer available in the diet and these effects are male-specific. Elevated neuroinflammation in reward neurocircuitry may underlie these sex-specific effects.


Assuntos
Interleucina-10 , Sacarose , Camundongos , Feminino , Masculino , Animais , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Camundongos Endogâmicos C57BL , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Água , RNA Mensageiro
9.
3D Print Addit Manuf ; 11(1): 10-23, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389686

RESUMO

The four-dimensional (4D) printing is an evolving technology that has immense scope in various fields of science and technology owing to ever-challenging needs of human. It is an innovative upgradation of 3D printing procedure, which instills smart capabilities into materials such that they respond to external stimulus. This article aims to investigate the feasibility of 4D printing of polylactic acid (PLA)-based composite scaffolds fabricated by incorporating four different nature-inspired architectures (honeycomb, giant water lily, spiderweb, and nautilus shell). The composites were developed by adding 1, 3, and 5 wt.% of Calcium Phosphate (CaP) into PLA. Various thermomechanical tests were accomplished to evaluate the properties of developed material. Furthermore, the shape memory characteristics of these scaffolds were examined using thermally controlled conditions. The characterization tests displayed favorable outcomes in terms of thermal stability and hydrophilic nature of the PLA and PLA/CaP composite materials. It was found that the honeycomb structure showed the best shape memory and mechanical behavior among the four designs. Furthermore, the introduction of CaP was found to enhance mechanical strength and shape memory property, whereas the surface integrity was adversely affected. This study can play a vital role in developing self-fitting high-shape recovery biomedical scaffolds for bone-repair applications.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38279523

RESUMO

BACKGROUND: Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES: Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS: The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS: This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION: However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.

11.
Sci Total Environ ; 914: 169707, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184253

RESUMO

The primary objective of this research was to assess microplastics (MPs) in the sediments of Chilika lake. MPs were extracted from 22 sediment samples using the density separation method combined with vacuum pump filtration. A stereo-zoom microscope and Raman spectroscopy were employed to identify the sediment-associated MPs. The total MPs collected from all 22 sites was 440 ± 3.53 particles kg-1 wet sediments, with sizes ranging between 50 and 500 µm. In terms of morphology, fibers and fragments emerged as the dominant MP types, with counts of 210 ± 1.66 and 175 ± 1.76 particles kg-1 wet sediments, respectively. Raman spectroscopy verified the presence of various MP polymers in the sediments, predominantly HDPE (37 %), followed by PS (20 %), PET (18 %), PA (11 %), PP (7 %), and PC (7 %). A notable color variation was observed in MPs; black being the most prevalent (38.8 %), succeeded by blue (19.5 %), green (11.8 %), white (11.5 %), red (10.6 %), and transparent (7.5 %). ANOVA results indicated significant (p > 0.05) variations in MP abundance across the 22 sampling locations. However, principal component analysis (PCA) and multiple regression analysis indicated that water quality parameters did not significantly influence MP abundance, yet it was found that MP retention was higher in fine-grained sediments like clay and silt. The leading sources of MPs in Chilika lake were found to be aquafarming, trailed by river and sewage discharges, fishing activities, antifouling coatings and tourism. Additionally, the pollution load index (PLI) was employed to gauge the ecological risks, categorizing the lake under risk category 1, which implies a minimal level of MPs pollution. This research aims to serve as an early warning system for MPs pollution in productive brackish water habitats globally, including Chilika lake, guiding policymakers towards appropriate management strategies and preventive measures.


Assuntos
Lagos , Poluentes Químicos da Água , Prevalência , Microplásticos , Plásticos , Índia , Polímeros , Monitoramento Ambiental , Sedimentos Geológicos
12.
Sci Rep ; 14(1): 1961, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263240

RESUMO

To simulate the bending behaviour of paddy straw at varied moisture contents after crop harvesting, we created a flexible paddy straw specimen model based on the Hertz-Mindlin with parallel contact bonding model using the discrete element model (DEM) approach. The research presented in this study aims to investigate a new approach called Definitive Screening Design (DSD) for parameterizing and screening the most significant parameters of the DEM model. This investigation will specifically focus on the three-point bending test as a means of parameterization, and the shear plate test will be used for validation purposes. In addition, the most influential DEM parameters were optimized using another Design of Experiments approach called Central Composite Design. The findings from the DSD indicated that parameters such as bonded disk scale, normal stiffness, and shear stiffness have the highest impact on the bending force, while the coefficient of static friction (Straw-Steel) has the least effect. The three bonding parameters were respectively calibrated with the loading rate (0.42, 0.5, and 0.58 mm s-1) and a good agreement between actual and simulated shear force at moisture content M1-35 ± 3.4%, M2-24 ± 2.2% and M3-17 ± 2.6%. Modelled stem helps simulate the straw with low error and increases the accuracy of the simulation. The validated model, with an average relative error of 5.43, 7.63, and 8.86 per cent, produced reasonable agreement between measured and simulated shear force value and loading rate.

13.
Small Methods ; 8(2): e2300425, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37423964

RESUMO

The flexoelectric phenomenon, which occurs when materials undergo mechanical deformation and cause strain gradients and a related spontaneous electric polarization field, can result in wide variety of energy- and cost-saving mechano-opto-electronics, such as night vision, communication, and security. However, accurate sensing of weak intensities under self-powered conditions with stable photocurrent and rapid temporal response remains essential despite the challenges related to having suitable band alignment and high junction quality. Taking use of the flexoelectric phenomena, it is shown that a centrosymmetric VO2 -based heterojunction exhibits a self-powered (i.e., 0 V), infrared (λ = 940 nm) photoresponse. Specifically, the device shows giant current modulation (103 %), good responsivity of >2.4 mA W-1 , reasonable specific detectivity of ≈1010 Jones, and a fast response speed of 0.5 ms, even at the nanoscale modulation. Through manipulation of the applied inhomogeneous force, the sensitivity of the infrared response is enhanced (> 640%). Ultrafast night optical communication like Morse code distress (SOS) signal sensing and high-performing obstacle sensors with potential impact alarms are created as proof-of-concept applications. These findings validate the potential of emerging mechanoelectrical coupling for a wide variety of novel applications, including mechanoptical switches, photovoltaics, sensors, and autonomous vehicles, which require tunable optoelectronic performance.

14.
Small ; 20(7): e2305605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803918

RESUMO

Neuromorphic computing is a potential approach for imitating massive parallel processing capabilities of a bio-synapse. To date, memristors have emerged as the most appropriate device for designing artificial synapses for this purpose due to their excellent analog switching capacities with high endurance and retention. However, to build an operational neuromorphic platform capable of processing high-density information, memristive synapses with nanoscale footprint are important, albeit with device size scaled down, retaining analog plasticity and low power requirement often become a challenge. This paper demonstrates site-selective self-assembly of Au nanoparticles on a patterned TiOx layer formed as a result of ion-induced self-organization, resulting in site-specific resistive switching and emulation of bio-synaptic behavior (e.g., potentiation, depression, spike rate-dependent and spike timing-dependent plasticity, paired pulse facilitation, and post tetanic potentiation) at nanoscale. The use of local probe-based methods enables nanoscale probing on the anisotropic films. With the help of various microscopic and spectroscopic analytical tools, the observed results are attributed to defect migration and self-assembly of implanted Au atoms on self-organized TiOx surfaces. By leveraging the site-selective evolution of gold-nanostructures, the functionalized TiOx surface holds significant potential in a multitude of fields for developing cutting-edge neuromorphic computing platforms and Au-based biosensors with high-density integration.

15.
Org Biomol Chem ; 22(1): 114-119, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38050426

RESUMO

A molecular switch was developed to recognize and transport Cl- across lipid bilayers. The XRD-crystal structure and NOESY NMR spectra of a potent 4-aminoquinazoline analogue confirmed Cl--induced conformation changes. Systematic biophysical studies revealed that the quinazoline moiety forms cooperative interactions of H+ and Cl- ions with the thiourea moiety, resulting in the transport of H+/Cl- across the membranes. A pH-dependent analysis revealed that the transport of Cl- by the potent compound increased in an acidic environment. The potent compound could also transport H+/Cl- across Gram-positive bacteria, leading to antibacterial activities.


Assuntos
Cloretos , Bicamadas Lipídicas , Cloretos/química , Transporte de Íons , Bicamadas Lipídicas/química , Halogênios , Antibacterianos/farmacologia , Poder Psicológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-38083098

RESUMO

In recent times, we have seen extensive research in the field of EEG-based emotion identification. The majority of solutions suggested by current literature use sophisticated deep learning techniques for the identification of human emotions. These models are very complex and need huge resources to implement. Hence, in this work, a method for human emotion recognition is proposed which is based on much simpler architecture. For that, two publicly available datasets SEED and DEAP are used to perform experiments. First, the EEG signals of the two datasets are segmented into epochs of 1second duration. The epochs are also decomposed into different brain rhythms. The features computation is performed in two different ways, one is directly from the epochs and the other way is from the brain rhythms obtained after the decomposition of the epochs. Several features and their combination are examined with different classifiers. For the DEAP dataset baseline features are also utilised. It is observed that the support vector machine (SVM) has shown the best performance for the DEAP dataset when baseline feature correction and epoch decomposition are implemented together. The best achieved average accuracy is 96.50% and 96.71% for high versus low valence classes and high versus low arousal classes, respectively. For the SEED dataset, the best average accuracy of 86.89% is achieved using the multilayer perceptron (MLP) with 2 hidden layers.Clinical relevance- This work can be further explored to develop an automated mental health monitor which can assist doctors in their primary screening.


Assuntos
Eletroencefalografia , Emoções , Humanos , Eletroencefalografia/métodos , Emoções/fisiologia , Encéfalo , Aprendizado de Máquina , Redes Neurais de Computação
17.
Curr Pharm Des ; 29(44): 3532-3545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38151837

RESUMO

BACKGROUND: Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. OBJECTIVE: The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery. METHODS: The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution. RESULTS: Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites. CONCLUSION: The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Humanos , Emulsões , Sistemas de Liberação de Medicamentos/métodos , Ultrassonografia/métodos , Solventes , Meios de Contraste/química
18.
Curr Pharm Des ; 29(39): 3154-3165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018198

RESUMO

Orthodontic treatment typically requires an extended duration of 1-2 years to complete the treatment. Accelerating the rate of tooth movement during orthodontic treatment is essential for shortening the overall treatment duration. After the completion of orthodontic treatment, a prominent concern arises in the form of orthodontic relapse, where the teeth tend to revert to their original positions. This issue affects approximately 60% of the global population, underscoring the importance of implementing effective measures to address orthodontic relapse. An approach in this regard involves the targeted administration of herbal and synthetic drugs applied directly to the specific area of interest to facilitate tooth movement and prevent orthodontic relapse. Apart from this, researchers are investigating the feasibility of utilizing different types of nanoparticles to improve the process of orthodontic tooth movement. In recent years, there has been a noticeable increase in the number of studies examining the effects of various drugs on orthodontics. However, the currently available literature does not provide significant evidence relating to orthodontic tooth movement. In this review, the authors provide valuable information about the drugs and nanomaterials that are capable of further enhancing the rate of orthodontic tooth movement and reducing the risk of orthodontic relapse. However, a notable hurdle remains, i.e., there is no marketed formulation available that can enhance orthodontic tooth movement and reduce treatment time. Therefore, researchers should try herbal-synthetic approaches to achieve a synergistic effect that can enhance orthodontic tooth movement. In this nutshell, there is an urgent need to develop a non-invasive, patient-compliant, and cost-effective formulation that will provide quality treatment and ultimately reduce the treatment time. Another critical issue is orthodontic relapse, which can be addressed by employing drugs that slow down osteoclastogenesis, thereby preventing tooth movement after treatment. Nevertheless, extensive research is still required to overcome this challenge in the future.


Assuntos
Nanopartículas , Técnicas de Movimentação Dentária , Humanos , Recidiva
19.
ACS Appl Mater Interfaces ; 15(48): 56003-56013, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37992323

RESUMO

The pursuit of high-performance, next-generation nanoelectronics is fundamentally reliant on exploiting quantum phenomena such as tunneling at room temperature. However, quantum tunneling and memory dynamics are governed by two conflicting parameters: the presence or absence of defects. Therefore, the integration of both attributes within a single device presents substantial challenges. Nevertheless, successful integration has the potential to prompt crucial breakthroughs by emulating biobrain-like dynamics, in turn enabling sophisticated in-material neural logic operations. In this work, we demonstrate that a conformal nanolaminate HfO2/ZrO2 structure on silicon enables high-performing (>106 s) Fowler-Nordheim tunneling at room temperature. In addition, the device exhibits unipolar dynamic hysteresis loop opening (on/off ratio >102) with high endurance (>104 cycles) along with negative differential resistance, which is attributed to the collective ferroelectric and capacitive effects and is utilized to emulate synaptic functions. Further, proof-of-concept logic gates based on voltage-dependent plasticity and time-domain were developed using a single device, offering in-material neural-like data processing. These findings pave the way for the realization of high-performing and scalability tunneling devices in advanced nanoelectronics, which mark a promising route toward the development of next-generation, fundamental neural logic computing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...